Generation and Characterization of lowcharge electron beams at the NML Facility with Applications to next Generation X-ray free-electron lasers

Kwang-Je Kim (UChicago-Argonne), Philippe Piot (Fermilab), John Power (Argonne)

Uchi-ANL-FNAL collaboration meeting December 7th, 2010

Our ANL-FNAL-Uchi collaboration

Argonne:

APS: extensive beam simulation tools, light source R&D

Argonne Wakefield Accelerator:

- test facility available for experiments
- expertise in e- sources and instrumentation

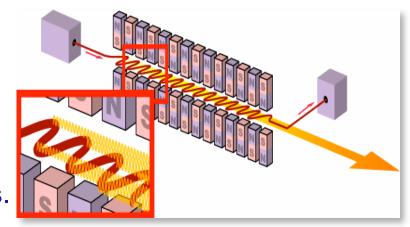
- Grid computing (FermiGrid)
 - Superconducting
 Test Accelerator
 Facility (STF@NML)
 - A0 Photoinjector Test Facility

Diagnostics R&D laser development

U. Of Chicago (Physics)

KJK's group: expertise in accelerator-based light source Muon collider physics, students

Collaborators


- Uchi: K.-J. Kim, G. T. Park*, and A. Valkovich*.
- ANL: J. Power,
 - Laser R&D and Instrumentation: J. Power,
 - Simulations: M. Borland and H. Shang (provide Elegant and GeneticOptimizer), L. Emery (provided/modified Shower),
- FNAL: P. Piot,
 - M. Church (STF@NML facility manager),
 - Simulations: C. Prokop[#], Y.-E Sun^{*}, J.C. Thangaraj^{*}
 - Laser R&D: J. Ruan,
 - Instrumentation: A. Lumpkin, J. Ruan.

^{*} Fermilab Peoples fellows

[#] Graduate student from Northern Illinois University (sponsored by Los Alamos National Lab.)

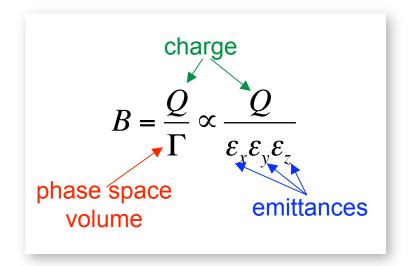
Introduction

- Accelerator-based light sources using the free-electron laser (FEL) principle have opened new research opportunities,
- These light sources have unique properties (tunability, coherence, peak E-field) and enables, e.g., the exploration of dynamical process in biology, chemistry, material science,
- Recent developments
 - "Single-spike" single-pass FELs: can provide ultrashort (10-fs) x-ray pulses,
 - "X-rays FEL oscillators" can produce narrow-band fully-coherent hard x-rays.

 The performances of FEL-based light sources are strongly correlated to the properties of the driving electron beams

X-ray FEL oscillator (XFELO)

- Opens a new avenue for the future hard x-ray science
- Fully coherent, tunable hard x-rays, ~ 1 meV bandwidth, 10⁹ photons/pulse,
 1 MHz repetition rate
- XFELO will dramatically improve techniques developed in the 3rd generation light sources and will create new opportunities complementary to single-pass FELs

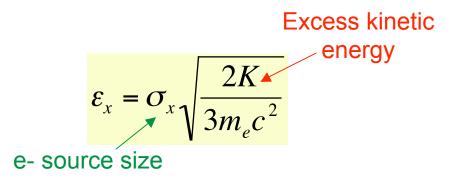

K.-J. Kim et al., PRL 100, 244802 (2008)

Uses diamond crystals with a high Bragg reflectivity

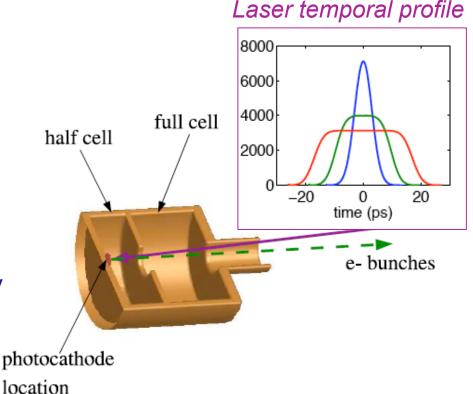
Requirements on electron beams

- These accelerator-based light source put stringent requirement on the *brightness* of the electron beams
- In Beam Physics, the brightness is defined in term of canonical emittances, e.g.,

$$\varepsilon_{x} = \frac{1}{m_{e}c} \left[\left\langle x^{2} \right\rangle \left\langle p_{x}^{2} \right\rangle - \left\langle xp_{x} \right\rangle \right]^{1/2} \geq \frac{\hbar}{2m_{e}c}$$

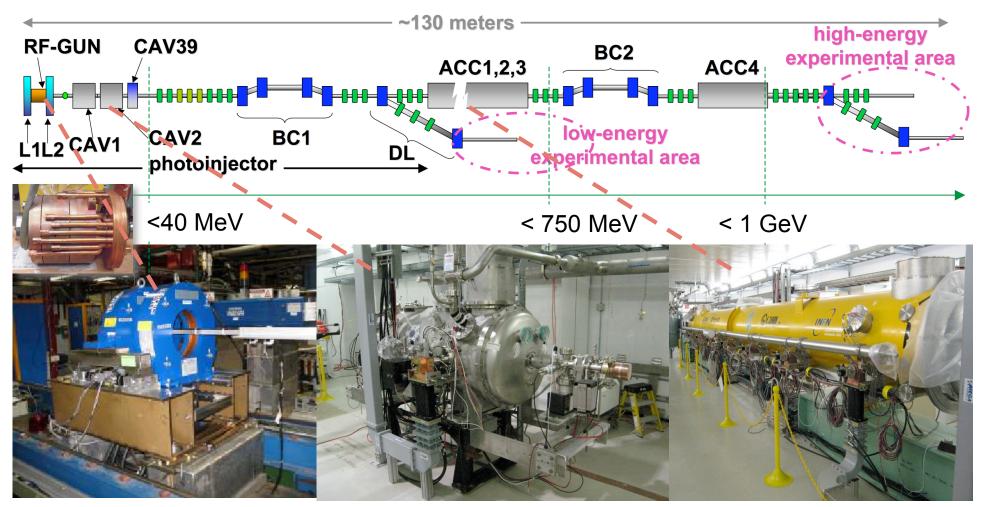


for the phase space associated to the horizontal (x,p_x) degree of freedom.

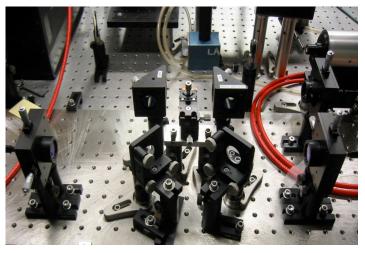

⇒ high brightness is a compromise between low emittances and high charges which are antagonist requirements...

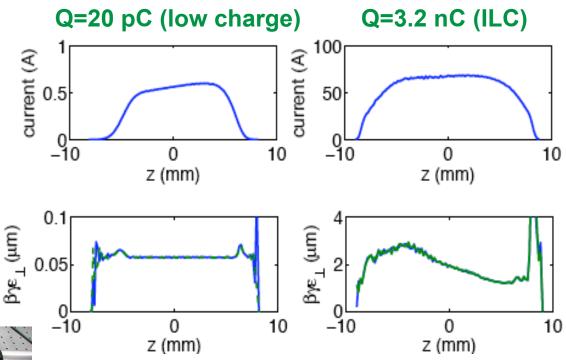
Challenges in producing "bright" e- beams

 Ultimately, the achievable brightness is limited by the electron emission process. In particular the transverse emittance is fundamentally limited to


- The phase space volume dilutes as the charge increases due to chargedependent collective effects,
- Rapid acceleration in radio-frequency guns enables the mitigation of space charge effects.

• Producing a beam with low current reduces collective effects and enables the operation with electron source size $(\sigma_x) \Rightarrow$ low emittances.


The STF@NML facility at Fermilab


- Fermilab is constructing a superconducting accelerator test facility (STF)
- The facility will be capable of producing bright electron beams.

High-brightness beams at STF@NML

- Simulations of the 40-MeV photoinjector indicate that low-emittance beams can be obtained at low charges
- This is achieved with a conventional photoemission source with a long flat-top laser

 developing a pulse stacker to produce such laser pulse present several challenges: flatness, density modulation, ...

Challenges in measuring "bright" e- beams

 Measuring low emittances at low energies is challenging and can be severely limited by resolution issues Standard technique $\sigma_x = \sqrt{\frac{w^2}{12} + L^2 \sigma_x'^2}$ Improved technique

 The A0 photoinjector has transverse emittances ε~1 µm comparable to the resolution limit of the present diagnostics

- Simulation in progress (there is a limit on tolerable fractional energy spread)
- The technique will be experimentally tested next year at the A0 photoinjector

 $\sigma_x = \sqrt{R_{11}^2 \frac{w^2}{12} + R_{12}^2 \sigma_x^2}$

Status

Laser R&D

- Commissioning a new streak camera at the A0 photoinjector
- Laser part to enable the generation of long flat-top pulse will be specified and procured once the STF@NML laser oscillator is back from factory

Beam dynamics simulations

 Start-to-end simulation of NML are in progress and will be used to assess the acceleration and compression of 1-GeV ultra-low emittance beams

Diagnostics R&D

- Numerical modeling of an improved emittance diagnostics is underway
- Experimental test planned in Feb. 2011.

Thank you for your support!